

DEPARTMENT OF THE ARMY

CORPS OF ENGINEERS, PORTLAND DISTRICT PO BOX 2946 PORTLAND OR 97208-2946

REPLY TO ATTENTION OF

CENWP-EC-HD (1110a)

28 October 2012

MEMORANDUM FOR RECORD

SUBJECT: John Day (JDA) North Fish Ladder - Trip Report for field water velocity

measurements – October 18 and 19, 2012.

Participants: Schlenker, Steve EC-HD

Hansen, Martin, EC-HD Henrie, Gary, EC-HD

Field Trip Objectives:

1. The objective of this trip was to conduct water velocity measurements in the JDA North Fish Ladder. Total entrance discharge was determined for rating curve data at low tailwater, and average channel velocity was measured near Weir 155 and in the Auxiliary Water Supply (AWS) well. The general vicinity is noted in Appendix A. The USACE team consisted of Steve Schlenker, Martin Hansen and Gary Henrie. The USACE Price meter equipment was used to obtain water velocities in the various locations. Access for the work was coordinated with Miroslaw A Zyndol – resident JDA fish biologist.

Background:

- 2. Concern over problems of adult salmon migrating upstream through the North Fish Ladder has been noted by Miro Zyndol. Such delay at Columbia and Snake River dams is unacceptable to fishery agencies and has prompted the U.S. Army Corps of Engineers to gather field data to address the situation recently noted. An additional purpose of the site visit was to calibrate the 1-D Model for low tailwater conditions including entrance head; AWS head losses, channel velocities, and pump curves. A summary is provided in Appendix B.
- 3. After Miro alerted FPOM on the poor fish passage numbers in September, discussion between him and EC-HD lead to a diagnosis of probable low velocities in the fish way channel between the approximate middle of Diffuser 2 and the base of the ladder, Weir 155. EC-HD provided to FPOM results from

their numerical 1-D model indicating varying degrees of low velocities under different operations and also future operations after the Season 2 construction is completed this spring. In early October, Miro & other Project Biologists collected surface velocities that were significantly higher than the 1-D Model results.

- 4. In past years, the adult fish ladder on the north side of JDA has struggled to meet current fish passage criteria for fish ladders, and past problems have been reviewed. The current situation has relatively slow velocities in the lower channel (Diffuser 2) just downstream of the last weir. Miro (with EC-HD concurrence) suggested the low velocities could be improved by an interim operation that increased the Auxiliary Water Supply (AWS) flow (using the three pumps in manual mode) to a level so that the entrance head would exceed NMFS criteria (> 2.0 feet). Also the flow from the Exit section could be increased by raising depth over the control ladder weir, from 1.0 to 1.3 feet. The excessively high entrance head operation was later moderated to between 1.7 1.9 feet in early October, as request by NMFS due to concerns for Lamprey passage. All three operations were tested during the EC-HD site visit.
- 5. The low velocity problems should be largely or entirely mitigated by the Season 2 construction improvements (lowing Stover Pipe weir crests for the ladder diffusers 3 -15 and sluices gates that can limit the discharge from diffuser 2).

Data Collection:

- 6. The members of the data collection team arrived at the project on Oct. 18th and organized at the JDSFL (185 deck) at approximately 15:12. Per the staff personnel in the 'Smolt' Building, The forebay elevation at that time was recorded as 265.16 feet with the N. shore tailwater being 159.3 feet. The Exit Control Section Weir was observed to be overtopped by 1.3 feet (i.e. Ladder head). This did not change during the site visit. On 10-19-12 AM, the forebay was 265.16 feet and south & north tailwater were 159.5 and 159.1 feet respectively.
- 7. Data was collected at two locations in the ladder: total AWS discharge from the AWS conduit vent, (east of Weir 174) and channel velocities at a location some six feet downstream of the former Weir 155 and nine feet downstream of the monolith joint. Appendix A shows the areas where data was taken. Appendix C contains copies of the field data sheets. Appendix D shows photographs of the collection points and associated equipment. The data collection took place under generally fixed forebay and tailrace conditions. Water levels in the Tailwater stillwell were recorded by an 'OnSet' data logger, to supplement water levels

taken using the 'Solinst' water level meter 'e-tape'. The measurements of the e-tape are good to about 0.1 foot or so. The data logger confirmed well water levels did not change much during testing.

Flow Conditions in the Ladder and Lower Ladder Auxiliary Water System (AWS) and Fish Ladder Entrance:

8. Ladder Flow: The total flow in the Entrance was computed by the summation of the measured AWS discharge and the upper ladder flow from the Exit and Ladder Control Section. The Auxiliary Water Supply (AWS) conduit feeds the downstream end and entrance section from the afterbay NavLock exit channel by pumping, to provide the majority of the entrance flow. The flow at the counting station was 113 cfs, based on previous model measurements for a ladder head of 1.3 feet. Depending on the ladder and entrance heads, the fish ladder exit provides 85 -113 cfs and the AWS provides 800 - 2200 cfs.

Auxiliary Water System: The water to the lower section AWS is supplied by recently replaced pumps (driven by electrical power from the turbines). Direct measurement of the flow through the pumps would be impractical, but can be calculated from a rating curve using tailrace elevation and rating curves. For this field trip, AWS flow is estimated by integrating q grid of velocity measurements over the width and depth of the AWS conduit, using the Price meter equipment.

Entrances: The approximate tailwater elevation was recorded from the staff gage on the concrete wall downstream of the fish ladder entrance. The head differential between the tailwater and water level just upstream of the entrance was determined by measuring upstream water levels from the Elev. 185 deck. The average tailwater elevations and entrance heads for Tests 11, 12, and 13 were the following:

Ladder Head = 1.3 feet (113 cfs ladder flow) in all test cases below.

Pump Test 11:

Conditions under operation on initial day of site visit:

Tailwater Elevation = 159.15 feet Entrance head = 1.71 feet

Pump Test 12:

Conditions changed on 2nd day of site visit:

Tailwater Elevation = 159.15 feet

Entrance head = 1.51 feet

Pump Test 13:
Conditions changed on 2nd day of site visit:
Tailwater Elevation = 159.1 feet
Entrance head = 2.19 feet

Discharge Computations:

- The measurements were recorded on data sheets in Appendix C.
 Three sets of data were taken, designated as 'Pump Tests 11, 12, 13; and consisted of:
 - A. Pumping parameters recorded in the pump house, e-tape water levels in the discharge channel well, AWS diffuser "stove pipe" water levels and other water levels. Changes in pumping were affected by Stephanie Lesko CENWP-OD-J.
 - B. AWS conduit discharge measurements in the air vent, using Price meter reading to determine average flow and velocities
 - C. Fish Ladder Channel velocity measurements three sections were used, each with recordings at three different depths.

The total flow through the various sampling transects is determined by first calculating an integrated average velocity across the channel at each depth and then integrating the resultant averages again over all depths. The edge of the flow field was extrapolated from the two outermost measurements at a given depth. The total integrated average velocity was then multiplied by the total cross-sectional area to get a total flow rate.

Table 1 - Summary of Flow Rates, Pump Data, Entrance Head, and Channel Velocities

Low	, Taily	votor [y North				mmary	Tablo
		valei r	ump						IIIIIaiy	Table
Data Co		.0.1.0		Ladder		1.3		or shad)		
October	· 18-19, 2	:012		Ladder	FIOW =	113	cfs			
Max Pu	mp RPM	rations = amperage		229 510						
Pump Test No 11 12 13	Date 10/18 10/19 10/19	Aver. TW Elev. (ft) 159.2 159.2	Σ AWS Flow (cfs) 927 841 1,112	No. of Pumps 3 2 3	Pump RPM 175 224 205	% max RPM 76% 98% 90%	Max Amps 379 452 474		Ave Static Lift (ft) 4.0 3.1 5.2	Average Unit Pump Discharge (cfs) 309 420 371
Entra	nce O	peration	ons					Char	nel Velo	cities
		•				Entrance Readings		Locati	on 2**, near	Weir 155
Pump Test No	Date	Ave. TW Elev. (ft)	Δ TW in test (ft)	En- trance Flow (cfs)	Con- trol Panel	(2) Meas. Fut- ure Loca- tion*	Diff (1) - (2)	Flow Rate cfs	Average Velocity ft/s	Surface Velocity ft/s
11	10/18	159.15	-0.1	1,040	1.81	1.50	0.3	217	0.8	1.4
12 13	10/19 10/19	159.15 159.1	0.1 0	954 1,225		1.42 2.18	0.2 0.1	235 304	0.9 1.1	1.5 1.8
						Average	0.2	Ratio	Surf /Ave =	170%
				•	le of chann of Monolith		et u/s o	f entrance	structure	
Comp	arison	of Meas	ured P	ump Pe	rforman	ce with	Pum	p Curve	S	
•				Averag	ge Pump harge	% ** differer	*	Pump H	orsepower on Curves	
Pump Test No	No. of Pump	Ave Static Lift (ft)	% Max RPM	Meas. (cfs)	Curves (cfs)	Meas. curve		Curves HP	Recorded VFD HP	

4%

2%

6%

4%

160

366

331

285.7

244

379

371

331.3

296

411

349

352.1

4.0

3.1

5.2

4.1

76%

98%

90%

0.9

*** Average of previous percent differences in Tests 1-4, 10 were 8%

309

420

371

366.7

3

2

3

2.7

11

12

13

Ave.:

Observations:

- 10. The measurement of the discharge and channel velocities at different AWS pump settings at the low tailwater generally indicates overall compliance with the previously developed ladder model. This mathematical hydraulic model has been utilized to develop this season's information, the PLC logic, and will be used to develop the PLC logic after the Season 2 Construction upgrades. The velocity measurements taken were to verify/calibrate the ladder model at low tailwater levels and to provide experience for future operations. This data provides important channel velocity verification, to allow proper judgments to be made on how to best operate the fish ladder, in similar circumstances. The low velocity data confirms and helps document the reason why fish did not proceed up the ladder earlier this fall. The data is attached within Appendix B.
- 11. The two of the key improvements planned for Season 2 (FY 13 In-water work period) are designed to improve channel velocities in the lower ladder:
 - Lower Stove Pipe Weirs for Ladder Diffusers 3 15
 - This will direct more flow in the ladder diffusers which will in turn raise velocities at the base of the ladder
 - Install eight (8) new sluice gates for diffuser two (2) portals
 - This will limit flow into large Diffuser 2 and raise AWS hydraulic gradeline to help direct more flow into the ladder diffusers

Conclusions:

- 12. Water velocities in the vicinity of the former weir 155 and base of ladder Weir 158 were confirmed to be too low for acceptable salmon passage in the ladder. This out-of-criteria channel velocity condition will be addressed with the Season 2 construction. While not optimum, the interim operations with the increases in AWS flow and ladder head provided the best interim corrections for Season 1.
- 13. Also with calibration of the entrance head coefficient (0.694), the 1-D model simulated the field data with an average difference of 0.05 ft/s (higher in the field than model). The only aberration was with Pump Test 12, where the difference was +0.2 ft/s in the field. This shows that the model is a viable tool for simulating Season 2 Operations and PLC refinements.

Recommendations:

- 14. CENWP-EC-HD will provide a brief memo to FPOM on the Low Tailwater velocities experienced this year (Season 1) and the expected improvements with operations in Season 2.
- 15. Additionally, the Price meter equipment is in need of attention. Items needing consideration, given limited financial resources, are:
 - -replacement of the 'Aquacount' output reader
 - -purchase of a second Sounding Reel crank arm
 - -replacement of one of the threaded rods which guides the cable guide-wheel
 - -installation of the geared sprocket near the handle to make the 'catch' functional
 - -replace/refurbish Price meter that do not pass the 'two minute spin' test

Martin Hansen Hydraulic Engineer

Encl.

CF:

CENWP-EC-H (Buchholz, Robert)
CENWP-EC-HD (Phillips, Marie)
CENWP-OD-J (Mackintosh, David)
CENWP-OD-J (Zyndol, Miro)

CENWP-EC-TG CEN/FILES

CENWP-EC-H CAPLEY

CENWP-EC-H BUCHHOLZ

CENWP-EC-HD PHILLIPS

CENWP-EC-HD SCHLENKER

CENWP-EC-HD HANSEN

WAC/4871 28 OCT 2012

APPENDIX A - Vicinity Map sheets with schematic outline of North Fish Ladder

John Day Dam Spillway and North Fish Ladder.

Note: water velocity measurement locations are shown in red on the subsequent, more detailed pages, in red. See the photo collage for a visual depiction of the Price meter water velocity measurement locations.

Figure A-1: Plan View of John Day North Fishladder with Measurment Locations

Figure A-1 : Elevation View of John Day North Fishladder with Measurment Locations

APPENDIX B - Outline of Events and Data for JDA Fish Ladder non-performance.

On September 10, 2012, Miro Zyndol, (JDA Project Biologist) reported that the count of adult migrants was unusually low after spill ceased on August 31. Also concurrently plotted is the fish ladder flow, weir elevation (ft above weir crest at North Count Station, the total AWS pump flow, and the entrance head (differential in feet as measured from water surface in the ladder about 40 - 60 feet upstream of the Fish Ladder Entrance minus the Columbia River tailwater elevation).

This incident was noticed when fish were 'holding', that is milling about in the lower North Fish Ladder at the same time that the fish count plummeted. John Day fish biologists responded by increasing flow by two methods:

- 1. Increase Diffuser 16 grating flow at the North Count Station. The diffusor grating is below the 'Control Section'. This resulted in an increase in water overtopping the weir from 1 ft (for salmon passage) to about 1.3 ft (for shad passage).
- 2. Pump flow from three units was increased by increasing the RPM's. This resulted in the 'head differential' increasing from 1 foot ('normal', typical condition) to 2.2 to 2.3 feet, starting On September 19, 2012. This was subsequently reduced to about 1.8 feet per request from NMFS. This is within NMFS criteria (but higher than the normal optimum 1.5 feet entrance head) and eases lamprey passage from the excessive head applied earlier.
- 3. Detailed Pump Operation Log From Miro Zyndol:
 - -prior to 9/19 AWS pump[s operated to maintain 1.5 foot entrance criteria and ladder head at 1.0 feet
 - -9/19 we increased the AWS output to max (pumps in manual setting) at approximately 1400 hrs.
 - -9/26 Due to NOAA concerns for violating flow criteria, we scaled down to below 2.0' differential, at approximately noon.

Additionally:

- -9/27 one AWS pump tripped AM, and JDN entrance was temporarily at 1.5 'differential
- -9/28 returned to all three AWS pumps operation, at approximately noon

The following figure shows a plot of the percent of total daily adult Chinook salmon passed by the North Fishladder in 2012 versus the average daily percent in 2009-2011 compiled by Miro Zyndol. The data record goes from Aug 06 – Oct 31 for each year. The red solid line represents 2012; the blue dashed line represents 2009-11. The light green line represents the total daily adult salmon passed in 2012 graphed against the secondary axis over the same time period.

The graph shows the poor, post-spill performance of JDAN in 2012 in comparison to previous years, and partial improvement with the interim operations after Sept 19.

Figure B-1: Percent of Total Adult Chinook Salmon passed at North Fishladder and Total Daily Adult Chinook Count

DEPARTMENT OF THE ARMY

CORPS OF ENGINEERS, PORTLAND DISTRICT PO BOX 2946 PORTLAND OR 97208-2946

APPENDIX C - Detailed field data – Fish Ladder Velocity Data sheets with reductions

Flow Conditions Measured (numbering started from initial tests in spring):

Ladder Head = 1.3 feet (113 cfs ladder flow) in all test cases below.

Pump Test 11:

REPLY TO ATTENTION OF

Conditions under operation on initial day of site visit:

Tailwater Elevation = 159.15 feet Entrance head = 1.7 feet

Pump Test 12:

Conditions changed on 2nd day of site visit:

Tailwater Elevation = 159.15 feet Entrance head = 1.5 feet

Pump Test 13:

Conditions changed on 2nd day of site visit:

Tailwater Elevation = 159.1 feet Entrance head = 2.2 feet

The data for each Pump Test is arranged in the following order:

- Pump Data Sheet 1 includes pumps used, pumps speeds, pump amperage and VFD horsepower
- Pump Data sheet 2 includes static lift of pumps (based on difference between water level elevations in pump discharge channel and Navlock Tailwater), hydraulic gradeline in AWS conduit, tailwater and entrance head data from both control panel readouts in electrical building and physical measurements using sounding tapes.
 - (Note that entrance heads reported at the control panel report values 0.1 feet higher than physically measured on average. However, the physical measurements in the approach channel 50 feet upstream of the entrance are not precise due to the high channel velocities that cause difficulty with sounding tapes. The water sensor is located about 3 inches above the above of the bottom of the weighted metal sensor housing that is launched downstream and into a pendulum motion when immersed into fast moving flow.)
- AWS Flow Measurements through air vent east of Weir 174 Includes depth in conduit and velocities measured over a grid of 5 columns (across the channel) with 5 depths of measurement is each column. The data is numerically integrated for each depth across the width of the channel. The velocities along sidewalls of the channels are estimated by means of modified projection from the outermost two measurements in proximity to the wall. The integrated average velocities for each depth are then integrated over the vertical depth of flow in the same manner. The flow rate is the total integrated velocity x depth x width.
- Channel Velocity Measurements at Location 2 (near former Weir 155) Includes flow depths and velocities measured over a grid of 3 to 5 columns (across the channel) with 3 depths of measurement is each column. The average velocities and flow rates are computed in the same manner as described in the previous paragraph.

'Test 11' sheets, dated 10-18-12

JOHN D	AY NORT	H FISH	LADDE	R HEAL	DATA				
Date:	10/18/2012	Time:	16:17	18:38		Name:	MPH	GSH	SJS
PUMP T	EST NUN	IBER:	11			EN	TRANCE DA	TA READOL	IT:
					16:17	TW	159.2	App Cha	161.0
NUMBER	OF PUMPS	OPERATI	NG:	3	18:38	TW	159.1	App Cha	160.9
RPM OF P	UMPS OPE	RATING:		175					
% Max RP	M			76%		ENTRANC	E DATA I	READOUT:	
		Pump No.	1	2	3	4	5	6	
PUMPS	IN OPER		_	χ	X	X	3		
i Givii G	01 210	TIOIT.		X	X	A			
PRESSU	RE AND	WATER	SURFA	CE ELE	VATIONS	<u>:</u>			
					meas.				
COUNTI	NG STAT	TION ST	AFF GA	GE =	1.3	ft	TIME:	16:06	
PHMP &	AWS HE	AD MEA	SUREN	IENTS:		(Deck Elev		185	ft)
I OMII &	AWSIIL	AD NILA	SUKLIV	LIVIS.		(datum = NG		103	11)
PUMPS	FROM U/	S END:							
			CONTE	OL RO	OM READ	INGS:			
PUMP#	1	TIME:	16:17	18:38	7	PUMP #	4		
PUMP A	MPERAG	E		0		AMPS	378	379	
HORSE	POWER					HP	244	243	
VOLTAC	E to PUN	/IPS				VOLTS			
								1	
PUMP#	2	3				PUMP#	5		
PUMP A	MPERAG	E	361	363		AMPS			
HORSE	POWER		233	234		HP			
VOLTAC	GE to PUN	IPS				VOLTS			
]	
PUMP#	3	2				PUMP#	6		
PUMP A	MPERAG	E	366	367		AMPS			
HORSE	POWER		238	237		HP			
VOLTAC	GE to PUN	IPS				VOLTS			
VOLTAC	SE TO VE	DS							
VFD Fre				45.4		45.4	Hz		
, I D I I C	чисису			70.4		43.4	1 12		

MS ELEV. LOCK CHANNEL (etape) 25.5 159.50 TIME: 16:33 25.4 159.60 TIME: 18:44
25.4 159.60 TIME: 18:44
DISCHARGE CHANNEL (etape) Deck elev.= 185 ft CHANNEL ENDS: U/S END 21.4 163.6 ft D/S END 21.5 163 CHANNEL ENDS: U/S END 21.5 163.5 ft D/S END 21.6 163
CHANNEL ENDS: U/S END 21.4 163.6 ft D/S END 21.5 163 CHANNEL ENDS: U/S END 21.5 163.5 ft D/S END 21.6 163
CHANNEL ENDS: U/S END 21.5 163.5 ft D/S END 21.6 163.5
AVERACE PUMP STATIC LIFT.
AVERACE PLIVIP STATIC TIBLE
CHANNEL ENDS: U/S END 4.1 ft D/S END 4.
CHANNEL ENDS: U/S END 3.9 ft D/S END 3.
AWS DIFFUSER "STOVE PIPES" (ETAPE W/REF TO EL. 185 DECK)
meas. elev.
#15 22.1 162.9 TIME: 16:35
Note: if no overflow in diffuser slot, measure only the downstream slot without overflow in list below; then measure all
openings with overflow (downstream of that slot).
meas. elev. meas. elev. meas. elev.
10 # 9 # 8
7 # 6 # 5 <u>22.50</u> 162.50
4 # 3 22.60 162.40
U/S most Diffuser with Flow over weir: #5 (lapping over at #6)
READOUTS (Elec Building)
TIME: 16:16 18:38
CHANNEL (u/s of Entrance) 161.0 ft 160.9 ft
TAILWATER @ ENTRANCE = 159.2 ft 159.1 ft
Entrance head = 1.80 ft 1.81 ft
E-Tape Readings Distance to Water: WATER LEVEL ELEV: start end start end
Time: 16:45 Ref EL 16:45
Tailrace Level: 25.6 185.0 159.4 ENTRANCE HEA start end start end start end
Existing Stillwell:
Future Stillwell Location 24.1 160.9 1.5
(left side 50' u/s of entrance)
STAFF GAGE READINGS elev.
DIMIT GROE REMEMBERGO
Tailwater (+/- 1.0 ft) 159.3 ft
Fish Ladder over Diffuser 2 (+/1 0.2 ft) 161.5 161.4 ft

JOH	N DAY NO	RTH FIS	HLADDEF	R VELOCI	TY DATA							
AWS	CONDUIT	MEASL	JREMENT	S			Data	Collectors:	MPH	GSH	SJS	
			t of Weir 1									
				start	end							
Date:	10/18/2012	!	Time:	16:00	17:30		Pump Tes	t number	11			
		Dietones	to Water:		WATERLE	VELELEV.	Date	NCVD 2	0/47		Staff Gage:	3
		start	end		start	VEL ELEV:	Datu	m = NGVD 2	9/47	location		
	Time:	16:45	0:00	Ref EL	16:45	0:00				TW	159.3	
Tailra	ce Level :	25.6	0.0	185.0	159.4	185.0				Diff 2	161.5	
								_				
CONT	ROL PANEL	start	UTS:	Ref EL	159.2 start	159.1 end		Entrand start	e Head end			
		Start	enu	ReiEL	Start	enu		Statt	enu			
Exist	U/s Stillwell:	0.0	0.0	185.0	185.0	185.0		25.6	0.0			
	e US Stillwel		0.0		160.9	185.0		1.5	0.0		No. of	
CONT	ROL PANEL	READO	UTS:		161.0	160.9		1.80	1.81		Pumps Operating	
POIN	IT VELOCI	TY AND	FLOW M	EASUREN	MENTS IN	AWS:					3	
$Z_{15} = 1$	Meas. Distand	e to WS	22.20	ft (from 185 de	eck) B = Ch	annel Width =	24.0	ft		RPM	175.0	
WS =	Water Surfac	e Elev	162.80	(185 - Z ₁₅)		Deck elev =	185.0	ft		% Max	76%	
V = NA	easured Dept	h –	12.80	ft (=WS - 2)		Zi = INVERT =	150.0	fr		Max RPM	229	
r = 1VI6	asureu Dept	=	12.00					n.		IVIAX KPIVI	229	
	X1 = Side Edge	width inc-	3		nal dimension = Internal X Incr =	3.5 5	Div 10	est TW internal Y	26 -124			
	Y1 = Vertical e				nternal Y Incr. =				-36.42857143		(X' if YES)	HP
AWS	CONDUIT	MEASI	JREMENT	S:	(Air Vent S	lot East of W	eir 174)			Pump 1		
	305011		Vert. Sect. No. :	1	2	4	6	7		Pump 2	Х	238
Horiz.	Formula for Depth from	Depth from	Est Dist. from	1.5	5.0	12.0	19.0	22.5	Ave Vel	Pump 3		
No.:	surface (pm)	Surface (ft)	Left Edge (ft) (ft) from Fft					-	Ave vei		Х	234
		``	side	1.5	5.0	12.0	19.0	22.5		Pump 4	X	244
			Counts	46	53	57	60	51		Pump 5		
1	0.5*Y1/2	1.0	duration or							Pump 6		
-			angle	40.0	40.2	40.0	40.6	40.1				
			VELOCITY	2.55	2.93	3.16	3.28	2.82	3.00			
			Counts	F0	FO	E0.	E0.	F2				
2	Depth 1	27	Counts duration or	52	59	58	58	53				
_	(Y-Y1)/4	3.7	angle	40.0	40.4	40.1	40.0	40.5				
			VELOCITY	2.88	3.24	3.21	3.22	2.90	3.13			
			_									
_	Depth 2		Counts duration or	55	58	57	59	52				
3	+ (Y-Y1)/4	6.4	angle	40.1	40.2	40.0	40.5	40.2				
			VELOCITY	3.04	3.20	3.16	3.23	2.87	3.13	Price Meter	x	
	Depth 3		Counts	49	54	57	56	54		Price Me	ter Rotations p	er Count:
4	+ (Y-Y1)/4	9.1	duration or angle	40.2	40.6	40.5	40.1	40.4			1	
	, .		VELOCITY	2.71	2.95	3.12	3.10	2.97	3.00	V = 0.0178	+ 2.2048 * (rota	ations/time)
			VELOCITY	۷.1 ۱	۷.50	J. 1Z	3.10	15.2	3.00			
	Depth 4 +		Counts	46	48	57	53	46				
5	(Y-Y1)/4	11.8	duration or angle	40.6	40.2	40.3	40.4	40.1				
	should = Y - 0.5*Y1/2											
			VELOCITY	2.52	2.65	3.14	2.91	2.55	2.81			
	Total Avera	ge Integra	ated Velocit	y =	3.02							
	Total Comp	uted AW	S FLOW RA	TE =	927	(= B * Y * V))					

ATION: pprox Fo 0/18/2012 TROL PAN Pumps Op	2 Dormer V	Time: ADOUTS:	t of Monolith.	end 18:30	Collectors: s 1 and 2	Pump Entrance start 1.80	end	sus mber
D/18/2012 TROL PAN Pumps Op /ELOCI s. Distance er Surface	JEL REA	Time: ADOUTS:	Location) start 18:08 Tailw	end 18:30 rater end	s 1 and 2	Entranc start	11 ce Head	mber
Pumps Op /ELOCI s. Distance er Surface	IEL REA	Time:	start 18:08 Tailw	18:30		Entranc start	11 ce Head	mber
Pumps Op /ELOCI s. Distance er Surface	erating:	ADOUTS:	18:08 Tailw	18:30		start	ce Head	
Pumps Op /ELOCI s. Distance er Surface	erating:	ADOUTS:	Tailw	rater end		start	end	
Pumps Op /ELOCI* s. Distance er Surface	erating:	3	start	end		start	end	
Pumps Op /ELOCI* s. Distance er Surface	erating:	3						
Pumps Op /ELOCI* s. Distance er Surface	erating:	3	159.2	159.1		1.80		
/ELOCI	TY AND	_					1.81	
/ELOCI	TY AND	_					Price Meter	Х
/ELOCI	TY AND				Price		ns per Count =	1
s. Distance		FLOW M			,		.2048 * (rotation	
er Surface	e to WS		EASUREM	ENTS IN A	AWS:			
			ft (from 185 dec	k) B = Cha	annel Width =	24.0	ft	
red Depth	Elev	161.40	(185 - Z ₁₅)		Deck elev =	185.0	ft	
	=	11.40	ft (=WS - 2)		Zi = INVERT =	150.0	ft	
				al dimension =	5.0		est TW	26.
Side Edge Vertical ed		2		ernal X Incr. = ternal Y Incr. =	3	6		-124.i -25.i
		JREMENT	S:	(Former We	ir 155 Locatio	nn)		
		Vert. Sect.	72	2	4	6	7	
ormula for epth from	Depth from	No.: Est Dist. from	4.0	9	12.0	•	20.0	Ave Vel
rface (pm)	Surface (ft)	Left Edge (ft) (ft) from Fft side	4.0		12.0		20.0	Ave vei
		Counts	23		26		25	
0.5*Y1/2	1.0	duration or angle	41.2		40.6		40.1	
		VELOCITY	1.25		1.43		1.39	1.35
d Anale	Dean	pas from						South is -
(range)	_		-20 to 10		-10 to 20		-20 to 20	North is +
D 11.0		Counts	10		12		12	
+	5.7	duration or angle						
(1-11)/2		_						0.60
Depth 4								
+ Y-Y1)/4	10.4	duration or						
hould =		angle						
ひつ アコノ		VELOCITY	0.54		0.45		0.50	0.50
				0.79				
()	Depth 3 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 +	Depth 3 + 7-Y-1//2 5.7 Depth 4 + (-Y-1)/4 nould = 0.5*Y1/2 10.4 tal Average Interpretation	Counts C	Counts 10 Counts 10	Counts 10 Counts 10	Counts 10 12	Counts 10 12 12 13 14 15.7 1	Counts 10 12 12 12 13 14 14 15 15 15 15 16 16 16 16

'Test 12' sheets, dated 10-19-2012

JOHN D	AY NORT	TH FISH	LADDE	R HEAD	DATA				
Date:	10/19/2012	Time:	9:41	10:50		Name:	MPH	GSH	SJS
PUMP T	EST NUM	IBER:	12			EN	TRANCE DA	TA READOL	IT:
					9:41	TW	159.1	App Cha	160.7
NUMBER	OF PUMPS	OPERATI	NG:	2	10:50	TW	159.2	App Cha	160.8
RPM OF P	UMPS OPE	RATING:		224					
% Max RI	PM			98%					
		Pump No.	1	2	3	4	5	6	
PUMPS	IN OPER		•		X	X	<u> </u>		
PRESSU	RE AND	WATER	SURFA	CE ELE	VATIONS	<u>:</u>			
COLDIT	DIG CELE	TON OT	AFE C	C.E.	meas.	_			
COUNT	ING STAT	IION SI	AFF GA	AGE =	1.3	ft	TIME:		
PUMP &	AWS HE	AD MEA	SUREM	IENTS:		(Deck Elev	. =	185	ft)
DUMDO	EDOM III	C END.				(datum = NG	VD 29/47)		
PUMPS	FROM U/	S END.				4			
DUMB #					OM READ			1	
PUMP#		TIME:	9:41	10:50	10	PUMP#	4		
	MPERAG	E				AMPS	452	448	
	POWER					HP	379	375	
VOLTA	GE to PUN	IPS				VOLTS			
PUMP#	2	3				PUMP#	5		
PUMP A	MPERAG	E				AMPS			
HORSE	POWER					HP			
VOLTA	GE to PUN	IPS				VOLTS			
PUMP#	3	2				PUMP#	6		
	MPERAG	_	434	428		AMPS			
	POWER		364	364		HP			
VOLTA	GE to PUN	/IPS				VOLTS			
VOLTA	GE TO VE	DS							
VFD Fre	quency			58.1		58.1	Hz		
	1			55.1		55.1	-		

	ETAPE	MEASU	REMEN	TS IN E	DISCHARG	E CHAN	NEL:		
					meas.	elev.			
WS ELEV	V. LOCK	CHANN	EL (etap	e)	25.4	159.60	TIME:	9:48	
					25.2	159.80	TIME:	10:53	
DISCHAL	RGE CHA	NNEL (etape)		Deck elev.=	185	ft		
CHANNE	L ENDS:	U	S END	22.1	162.9	ft	D/S END	22.2	162.8
CHANNE	L ENDS:	U	S END	22.2	162.8	ft	D/S END	22.2	162.8
AVERAG	Е РИМР	STATIC	LIFT:						
CHANNE			······································	S END	3.3	ft		D/S END	3.2
CHANNE				S END	3.0	ft	-	D/S END	3.0
CHAINI	L LIVES.		O,	O LIVE	3.0	I ic		DIO LIVO	5.0
AWS DIF	FUSER '	STOVE	PIPES"	(ETAP	E W/REF	TO EL. 18	85 DECK	()	
	meas.	elev.							
#15	22.6	162.4					TIME:	10:10	
				the downst	ream slot witho	out overflow i	n list below;	then measure	all
openings with	meas.	ownstream o elev.	i that slot).	meas.	elev.		meas.	elev.	
# 10	111000	0.01.	# 9	mous.	5151.	# 8	mode.	0.01.	
# 7			# 6			# 5	22.80	162.20	
# 4			#3	23.00	162.00		22.00	102.20	
U/S most	Diffuser v	vith Flow	over we		#5	(barely lappin	ng over)		
READOU	TS Ælec	Building	`						
THE THE T	15 (Lice	Dunoing	TIME:	10:00		10:48			
CHANNE	T. (u/s of	Entrance		160.7	ft	160.80	ft		
TAILWA	•		•	159.1	ft	159.2	ft		
IAILWA	IEK @ E								
		Entra	nce head =	1.61	ft	1.60	ft		
E-Tape Readir	nas		Distance	to Wate	er:	WATER LEV	EL ELEV:		
L rapo resaan	go		start	end		start	end		
		Time:	10:00	11:04	Ref EL	10:00	11:04		
Tailrace Le	evel :		25.8	25.7	185.0	159.3	159.3	ENTRANCI	E HEAD:
			start	end		start	end	start	end
Existing St	tillwell :								
						160.7	160.7	1.4	1.4
Future Still		tion	24.3	24.3		100.7			
			24.3	24.3		100.7			
	lwell Loca ide 50' u/s of	entrance)							
	lwell Loca	entrance)				elev.			
	lwell Loca ide 50' u/s of	entrance)		s	ter (+/- 1.0 ft)	elev.		ft	

Distance to Water: Start EVEL ELEV: Datum = NGVD 29/47 Iocation	No. of Pumps Operating 2 224.0 98% 229
Cair Vent Stot East of Weir 174) Start End	No. of Pumps Operating 2 224.0 98%
Date: 10/19/2012 Time: 9:30 10:40 Pump Test number 12 Stat Exercise 10 Exist Exercise	No. of Pumps Operating 2 224.0 98%
Distance to Water: WATER LEVEL ELEV: Datum = NGVD 29/47 Iocation	No. of Pumps Operating 2 224.0 98%
Distance to Water: Start end start end	No. of Pumps Operating 2 224.0 98%
Start end Ref EL 10:00 11:04 Ref EL 10:00 11:04 TW 7 TW 7 Tailrace Level : 25.8 25.7 185.0 159.3 159.3 159.3 Entrance Head Start end	No. of Pumps Operating 2 224.0 98%
Tailrace Level: 25.8 25.7 185.0 159.3 159.3 159.3 Dilt 2 CONTROL PANEL READOUTS: 159.1 159.2 Entrance Head Start end Ref EL Start end end	No. of Pumps Operating 2 224.0 98%
CONTROL PANEL READOUTS: 159.1 159.2 Entrance Head	No. of Pumps Operating 2 224.0 98%
Start end Ref EL Start end End Start End Start End Start End Start End Start End Start End End Start End End Start End E	Pumps Operating 2 224.0 98%
Exist U/s Stillwell:	Pumps Operating 2 224.0 98%
Future US Stillwell 24.3 24.3 160.7 160.7 1.4 1.4 1.4 1.4 1.60 CONTROL PANEL READOUTS: 160.7 160.8 1.61 1.60 CONTROL PANEL READOUTS: 1.60 TO THE PANEL REA	Pumps Operating 2 224.0 98%
CONTROL PANEL READOUTS: 160.7 160.8 1.61 1.60 CONTROL PANEL READOUTS: 160.7 160.8 1.61 1.60 CONTROL PANEL READOUTS: 1.60 CONTROL PANEL PA	Pumps Operating 2 224.0 98%
POINT VELOCITY AND FLOW MEASUREMENTS IN AWS: Z ₁₅ = Meas. Distance to WS Z _{2.70} tt (from 185 deck) WS = Water Surface Elev 162.30 185 - Z ₁₅) Deck elev = 185.0 tt % Max Y = Measured Depth = 12.30 tt (eWS - 2) X1 = Side Edge width inc= 3 No of Internal X Incr = 5 Y1 = Vertical edge height ir 2 No of Internal X Incr = 5 No : WS CONDUIT MEASUREMENTS: (Air Vent Stot East of Weir 174) Pump 1 Vert. Sect. No.: No.: Promula for Depth from Surface (pm) Wirace (pm) Vert. Sect. No.: 1 2 4 6 7 Pump 2 Vert. Sect. No.: (I) (fif) from Fft side Surface (pm) Vert. Sect. No.: (I) (fif) from Fft side Surface (pm) Vert. Sect. No.: 1 2 4 6 7 Pump 2 Pump 3 Pump 4 Pump 5 Pump 5 Pump 5 Pump 6	2 224.0 98%
POINT VELOCITY AND FLOW MEASUREMENTS IN AWS: Z ₁₅ = Meas. Distance to WS 22.70 ft (from 185 deck) B = Channel Width = 24.0 ft RPM	2 224.0 98%
RPM	224.0
WS = Water Surface Elev 162.30 (185 - Z ₁₅) Deck elev = 185.0 ft % Max	98%
Y = Measured Depth = 12.30 ft (=WS - 2)	
Y = Measured Depth = 12.30 t (=ws - 2) Zi = INVERT = 150.0 t Max RPM	229
X1 = Side Edge width inc= 3	
X1 = Side Edge width inc= 3	
AWS CONDUIT MEASUREMENTS:	(X' if YES)
Horiz Formula for Depth from surface (pm) Surface (pm) Surface (pm) Formula for Depth from surface (pm) Surface (p	-/
Formula for Depth from Surface (pm) Pump 2 Est Dist. from Left Edge (ft) 1.5 5.0 12.0 19.0 22.5 Ave Vel Pump 3	
Depth from surface (pm) Depth from surfa	
1	Χ :
1 0.5°Y1/2 1.0 duration or angle 40.0 40.4 40.3 40.7 40.4 Pump 6 VELOCITY 2.83 2.97 3.03 3.11 2.58 2.94 Depth 1 + 3.7 duration or durati	X :
1 3.5 1.5 1.5 angle 40.0 40.4 40.3 40.7 40.4 40.4 40.3 40.7 40.4 40.4 40.5	
VELOCITY 2.83 2.97 3.03 3.11 2.58 2.94 Depth 1	
Depth 1	
Depth 1	
2 + 3.7 duration or	
VELOCITY 2.66 2.96 3.03 3.16 2.69 2.94	
Counts 52 56 55 54 50	
Depth 2	
(Y-Y1)/4 angle 40.3 40.5 40.0 40.6 40.6	
VELOCITY	Х
Death 2 Counts 47 54 55 52 50 Price Meter	er Rotations per C
Depth 3	1
V = 0.0178 +	+ 2.2048 * (rotations
VELOCITY 2.58 2.97 3.00 2.84 2.77 2.86	
Depth 4 + Counts 40 37 49 49 43	
5 (Y-Y1)/4 should = 11.7 duration or angle 40.7 40.1 40.6 40.2 40.7	
Y - 0.5*Y1/2 VELOCITY 2.19 2.05 2.68 2.71 2.35 2.43	
Total Average Integrated Velocity = 2.85	
Total Computed AWS FLOW RATE = 841 (= B * Y * V)	

JOH	N DAY NOR	TH FIS	HLADDER	VELOCIT	Y DATA				
LADI	DER CHAN	NEL M	EASUREN	IENTS	Data	Collectors:	MPH	GSH	SJS
LC	OCATION:	2	9 feet eas	t of Monolith	Joint Section	s 1 and 2			
	(Approx F	ormer V	VEIR 155 I				Pum	Test nu	mber
			_	start	end			12	
Date:	10/19/2012		Time:	11:10	11:49				
				Tailv	vater		Entrand	e Head	
				start	end		start	end	
C	ONTROL PAN	NEL REA	ADOUTS:	159.1	159.2		1.61	1.60	
		Tim	ne of Readings:	10:00	10:48				
							F	rice Meter	X
No.	of Pumps Op	erating:	2			Pric	e Meter Rotatio		1
POIN	IT VELOCI	TY AND	FLOW M	EASUREM	IENTS IN A	AWS:	V = 0.0178 + 2	.2048 * (rotation	is/time)
Z ₁₅ = N	Meas. Distance	e to WS	23.80	ft (from 185 dec	ck) B = Ch a	annel Width =	24.0	ft	
	Water Surface			(185 - Z ₁₅)	,	Deck elev =	185.0		
Y=Me	easured Depth	ı =	11.20	ft (=WS - 2)		Zi = INVERT =	150.0	ft	
					nal dimension =	5.0	Div	est TW	26.0
	X1 = Side Edge Y1 = Vertical ed		4 2		ternal X Incr. =	3		internal Y	-124.0 -25.8
AWS	CONDUIT			S:	(Former We	ir 155 Locati	on)		
	Formula for	Depth	Vert. Sect. No. :	1	2	4	6	7	
Horiz. No.:	Depth from	from Surface	Est Dist. from Left Edge (ft)	2.0	7.0	12.0	17.0	22.0	Ave Vel
	surface (pm)	(ft)	(ft) from Fft side	2.0	7.0	12.0	17.0	22.0	
			Counts	31	21	27	27	32	
1	0.5*Y1/2	1.0	duration or angle	42.6	41.4	40.3	40.8	40.9	
			VELOCITY	1.62	1.14	1.50	1.48	1.74	1.49
	erved Angle	•	ees from						South is -
OT FI	ow (range)	iong	itudinal	-20 to 10	-25 to 10	-20 to 10	-20 to 20	-10 to 10	North is +
	Depth 3		Counts	9	9	18	13	15	
4	+ (Y-Y1)/2	5.6	duration or angle	41.6	45.5	40.2	41.4	41.2	
			VELOCITY	0.50	0.45	1.01	0.71	0.82	0.70
	Depth 4		Counts	13	7	7	7	13	
5	+ (Y-Y1)/4 should =	10.2	duration or angle	41.0	44.5	42.7	44.2	41.0	
	Y - 0.5*Y1/2		VELOCITY	0.72	0.37	0.38	0.37	0.72	0.51
	Total Aver	age Int	egrated V	elocity =	0.88				
	Total Com	puted	AWS FLO	WRATE =	235	(= B * Y * V)			

'Test 13' sheets, dated 10-19-2012

				R HEAD	DAIA				
Date:	10/19/2012	Time:	13:20	14:10	15:15	Name:	MPH	GSH	SJS
PUMP TI	EST NUM	IBER:	13			EN	TRANCE DA	TA READOL	JT:
					13:20	TW	159.1	App Cha	161.4
NUMBER (OF PUMPS	OPERATI	NG:	3	14:10	TW	159.1	App Cha	161.4
RPM OF PU	JMPS OPE	RATING:		205	15:15	TW	159.1	App Cha	161.4
% Max RP	М			90%		ENTRANC	E DATA F	READOUT:	
		Pump No.	1	2	3	4	5	6	
PUMPS I			-	X	X	X			
PRESSUI	RE AND	WATER	SURFA	CE ELE	VATIONS meas.	<u>:</u>			
COUNTI	NG STAT	TON ST	AFF C	GF -	1.3	ft	TIME:		
COUNTI	MOSIAI	ION 51	AFF GA	IGE –	1.5	it.	I IIVII.		
PUMP &	AWS HE	AD MEA	SUREM	<u> 1ENTS:</u>		(Deck Elev		185	ft)
PUMPS F	ROM II/	S FND:				(datum = NG	VD 29/47)		
<u> </u>	110111 0/	<u> </u>	CONTE	OL PO	OM READ	INGS:			
PUMP#	1	TIME:	13:20	14:10	15:15	PUMP #	4	1	
PUMP AN	MPFRAC		10.20			AMPS	473	474	475
HORSE F		L				HP	371	369	370
VOLTAG		/DC				VOLTS	371	309	370
VOLTAG	EUTON	11 3				VOLIS		,	
PUMP#	2	3				PUMP#	5		
PUMP AN	MPERAG	E	459	459	458	AMPS			
HORSE F	POWER		351	355	356	HP			
VOLTAG	E to PUM	IPS				VOLTS			
]	
PUMP#	3	2				PUMP#	6		
PUMP AN	MPERAG	E	461	464	462	AMPS			
HORSE F	POWER		361	361	356	HP			
VOLTAG	E to PUM	1PS				VOLTS			
VOLTAG	E TO VF	DS							
VFD Free	uency			53.2		53.3	Hz		

	ETAPE	MEASU	REMEN	TS IN E	DISCHARG	E CHAN	NEL:		
					meas.	elev.			
WS ELE	v. LOCK	CHANN	EL (etap	e)	25.7	159.30	TIME:	13:26	
					25.4	159.60	TIME:	14:15	
DISCHA	RGE CHA	ANNEL (etape)		Deck elev.=	185	ft		
CHANNE	EL ENDS:	: U	/S END	20.4	164.6	ft	D/S END	20.4	164.6
CHANNE	EL ENDS:	. U	S END	20.3	164.7	ft	D/S END	20.4	164.6
AVERAG	E PUMP	STATIO	C LIFT:						
	EL ENDS:			S END	5.3	ft		D/S END	5.3
***************************************	EL ENDS:			S END	5.1	ft		D/S END	5.0
CILITITI	E EI (E)	•	<u> </u>		0.1]		7,0 1.12	0.0
AWS DIF	FUSER '	'STOVE elev.	PIPES"	(ETAP)	E W/REF	ΓΟ EL. 18	85 DECK	()	
#15	21.1	163.9					TIME:	13:45	
	erflow in diff	fuser slot, me	asure only	the downst	ream slot witho	out overflow in		then measure	all
openings with	overflow (do		f that slot).						
" 40	meas.	elev.	" 0	meas.	elev.	" 0	meas.	elev.	
# 10			# 9			# 8			
# 7	21.5	163.5	# 6	21.5	163.5	# 5	21.9	163.1	
# 4	21.9	163.1	# 3	21.8	163.2				
U/S most	Diffuser v	with Flow	over we	eir:	# 6				
<u>READOU</u>	JTS (Elec	Building)						
			TIME:	13:20		14:10		15:13	
CHANNE	EL (u/s of	Entrance	e)	161.4	ft	161.40	ft	161.40	ft
TAILWA	TER @ E	ENTRAN	CE =	159.1	ft	159.1	ft	159.1	ft
		Entra	nce head =	2.29	ft	2.29	ft	2.27	ft
E Tono Boodi	ngo		Distance	to Moto	<u> </u>	WATER LEV	EL ELEV.		
E-Tape Readi	riys		start	end end	;; . 	start	end		
		Time:	13:39	14:28	Ref EL	13:39	14:28		
Tailrace Lo	evel:		25.8	25.8	185.0	159.2	159.3	ENTRANC	E HEAD:
			start	end		start	end	start	end
Existing S	tillwell :								
Future Stil	lwell Loca	tion	23.6	23.6		161.4	161.4	2.2	2.2
(left s	ide 50' u/s of	entrance)	23.6	23.6	(right side)	161.4	161.4		
	STAFF (GAGE RI	EADING	S		elev.			
				Tellers	hor (1/ 405)	2		4	
					ter (+/- 1.0 ft)			ft	
		Fish Lac	ider over	Diffuser	2 (+/1 0.2 ft)	162.0		ft	

AWS	CONDUIT	MEASU	JREMENT	s			Data	Collectors:	MPH	GSH	SJS	
	(Air Vent S						2 4.4	0000				
	10/10/00/10			start	end		D T		40			
ate:	10/19/2012		Time:	13:10	14:07		Pump Tes	t number	13		Staff Gages	5
		Distance	to Water:		WATER LE	VEL ELEV:	Datui	m = NGVD 2	9/47	location	للسا	
		start	end 14:28	Ref EL	start	end 14:28				TW	2	
	Time:	13:39			13:39						, ,,,,	
aılra	ce Level :	25.8	25.8	185.0	159.2	159.3				Diff 2	162.0	
ONT	ROL PANEL			5 / 5	159.1	159.1		Entrand				
		start	end	Ref EL	start	end		start	end			
	U/s Stillwell:	0.0		185.0	185.0	185.0		25.8	25.8			
	US Stillwell	23.6			161.4	161.4		2.2	2.2		No. of Pumps	
ON	ROL PANEL	KEADO	015:		161.4	161.4		2.29	2.29		Operating	
OIN	T VELOCIT	TY AND	FLOW M	EASURE	MENTS IN	AWS:					3	
'45 = I	Meas. Distance	e to WS	21 10	ft (from 185 de	ck) B = Ch	annel Width =	24.0	ft		RPM	205.0	
	Water Surface						185.0				90%	
				(185 - Z ₁₅)		Deck elev =				% Max		
′ = M	easured Depth	=	13.90	ft (=WS - 2)		Zi = INVERT =	150.0	ft		Max RPM	1 229	
	X1 = Side Edge	width inc=	3		nal dimension = nternal X Incr =	3.5 5	Div 10	est TW internal Y	26 -124			
	Y1 = Vertical ed				nternal Y Incr. =	4			-36.42857143		(X' if YES)	HP
ws	CONDUIT	MEASL		S:	(Air Vent Si	lot East of We	eir 174)			Pump 1		
	Family (a)	Depth	Vert. Sect. No. :	1	2	4	6	7		Pump 2	Х	355
loriz. No.:	Formula for Depth from	from Surface	Est Dist. from Left Edge (ft)	1.5	5.0	12.0	19.0	22.5	Ave Vel	Pump 3	Х	361
	surface (pm)	(ft)	(ft) from Fft side	1.5	5.0	12.0	19.0	22.5		Pump 4	х	371
			Counts	55	57	58	60	61		Pump 5		
1	0.5*Y1/2	1.0	duration or							Pump 6		
•		1.0	angle	40.3	40.7	40.3	40.3	40.5				
			VELOCITY	3.03	3.11	3.19	3.30	3.34	3.19			
	D		Counts	55	61	61	64	66				
2	Depth 1 +	3.5	duration or angle	40.7	40.0	40.4	40.5	40.3				
	(Y-Y1)/4		_						3.38			
			VELOCITY	3.00	3.38	3.35	3.50	3.63	3.38			
	Depth 2		Counts	61	62	62	66	64				
3	+ (Y-Y1)/4	6.4	duration or angle	40.6	40.3	40.3	40.0	40.2				
	, ,		VELOCITY	3.33	3.41	3.41	3.66	3.53	3.47	Price Meter	X	
		4	Counts duration or	58	58	65	63	64		Price Me	eter Rotations p	er Cou
_	Depth 3	10.5	angle	40.2	40.3	40.2	40.1	40.4			1	
4	Depth 3 + (Y-Y1)/4					3.58	3.48	3.51	3.41	V = 0.017	8 + 2.2048 * (rota	ations/tin
4	+		VELOCITY	3.20	3.19	0.00						
4	+						60	47				
	+ (Y-Y1)/4 Depth 4 +	12 9	Counts duration or	53	58	60	60	47				
4	+ (Y-Y1)/4 Depth 4	12.9	Counts				60 40.6	47 40.0	3.11			

JOH	N DAY NOR	TH FIS	HLADDER	VELOCIT	Y DATA				
LADI	DER CHANI	NEL M	EASUREN	IENTS	Data	Collectors:	MPH	GSH	SJS
L	OCATION:	2	9 feet east of MonolithJ		Joint Sections 1 and 2				
	(Approx F	ormer V	VEIR 155 Location)				Pump Test nui		mber
				start	end			13	
Date:	10/19/2012		Time:	14:35	17:05				
				Tailwater			Entrance Head		
				start end			start end		
CONTROL PANEL REA			ADOUTS:	159.1	159.1		2.29	2.29	
		Tim	e of Readings:	14:10	15:13				
							F	Price Meter	Х
No. of Pumps Operating:			3	Pri		ce Meter Rotations per Count = V = 0.0178 + 2.2048 * (rotation		1	
POIN	T VELOCI	TY AND	FLOW M	EASUREM	IENTS IN A	AWS:	V = 0.0178 + 2	2.2048 ^ (rotation	ns/time)
POINT VELOCITY AND FLOW						<u></u>			
Z_{15} = Meas. Distance to WS				ft (from 185 dec	ck) B = Cha	annel Width =	24.0	ft	
WS = Water Surface Elev			162.00	(185 - Z ₁₅)	- staff gage	Deck elev =	185.0	ft	
Y = Measured Depth =			12.00	ft (=WS - 2)		Zi = INVERT =	150.0	ft	
X1 = Side Edge width inc= Y1 = Vertical edge height in				Aprrox interr	nal dimension =	5.0	Div	est TW	26.0
			4 2		ternal X Incr. =	3 2			-124.0 -25.8
VMG	CONDUIT					ir 155 Locati			-23.0
Horiz. No.:	Formula for Depth from surface (pm)	Depth from Surface (ft)	Vert. Sect.	1	2	4	6	7	
			No. : Est Dist. from	2.0	7.0	12.0	17.0	22.0	Ave Vel
			Left Edge (ft)	2.0	7.0	12.0	17.0	22.0	
1	0.5*Y1/2	1.0	side						
			Counts duration or	36	30	30	32	36	
			angle	41.4	39.9	41.0	40.9	40.9	
			VELOCITY	1.94	1.68	1.63	1.74	1.96	1.79
Obse	rved Angle	Degr	ees from						South is -
			itudinal	-10 to 10	-30 to 30	-20 to 20	-20 to 20	-5 to 5	North is +
4	Depth 3 + (Y-Y1)/2	6.0		10 10 10		20 10 20	20 10 20		
			Counts duration or	16	13	16	15	20	
			angle	43.1	46.2	40.6	41.4	41.6	
			VELOCITY	0.84	0.64	0.89	0.82	1.08	0.85
5	Depth 4	+ -Y1)/4 ould = 11.0	Counts	19	9	9	6	14	
	+ (Y-Y1)/4 should = Y - 0.5*Y1/2		duration or						
			angle	42.1	42.1	41.5	43.1	40.0	
			VELOCITY	1.01	0.49	0.50	0.33	0.79	0.62
Total Average Integrated Velocity =					1.05				
	Total Compu	ited AWS	FLOW RA	TE =	304	(= B * Y * V)	1		

<u>APPENDIX D</u> - Photo collage of field data gathering showing equipment. (See following pages.)

<u>Photo-stream of John Day Dam N. Fish Ladder, Oct. 18</u> <u>& 19, 2012 data collection and associated equipment:</u> (Overall Images Nos. 1 to 9, on pages 1 to 4:)

Photo 1. Aerial View of North Fish Ladder from NavLock gate lifting tower – looking upstream towards dam, with Navlock on the left. The Fish Counting Station is in center of upper-most level of the fish ladder.

Photo 2. End view of North Fish Ladder – the AWS vent-well is shown in the lower right corner, as a projection from the end turn of the fish ladder channel, per the arrow. Three struts are at the base of the AWS vent-well wall.

Photo 3. N. Fish Ladder – looking downstream from AWS vent-well towards dam and former Weir 155, the other transect location where the fish ladder channel cross-sectional velocities were measured.

Photo 4. Elevation view of N Fish Ladder – the fish channel transect is located just right of the closely spaced dual concrete columns in line-sight with the entrance end of the fish ladder. The monolith joint runs between the two closely-spaced columns. The fish channel transect is nine feet to the right of the monolith joint, lying just to the right of right column as noted by the red arrow. The blue arrow pointing to the Elev. 185 deck is where e-tape water-surface level indicators are used to determine the water surface, just within the fish ladder entrance.

Photo 5. Water velocity measurement system – sounding reel on folding frame, plus 30# lead fish-weight, with Price meter. Price meter is lowered by stainless steel cable down into the AWS vent-well from the end pulley, via a hand-operated crank-arm mounted on the sounding reel.

Photo 6. Close-up of water velocity measurement system – sounding reel on folding frame, showing hand crank and electrical leads for measuring Price meter cup rotations, and hence water velocity. An adjustable cable-payout dial indicator is on the left upper end of the sounding reel chassis, directly above the reel axle.

Photo 7. Close-up of Price meter setup next to the AWS vent-well with 30# fish weight to maintain stability in turbulent flow. The upper wire connection lead ("one-count") is normally used, not the lower wire connection lead as shown ("five-count"). The cups of the Price meter are given a 'two minute spin' test before immersion to insure proper functioning. Concurrently the spin reading on the 'Aquacount' output reader (not shown) is also checked.

Photo 8. Close-up of Price meter setup next to the fish channel, near the former Weir 155. The fish weight and Price meter are drawn across the channel into position by the ropes attached to the metal links and metal cable-pulley. The position was checked using a marked-up light-weight white two inch plastic pipe. Note the connected blue and yellow 'Aquacount' output reader placed temporarily on the Elev. 185 deck. The operator normally stands on the folding frame where it rests on the deck, instead of the steel tubing sections shown.

Photo 9. Close-up of Price meter setup next to the fish channel with the metal pulley positioning system. The cups of the Price meter are given a 'two minute spin' test before immersion to insure proper functioning. This test consists of seeing if the cups, once manually spun, remain in motion for at least two minutes. Concurrently the spin reading on the 'Aquacount' output reader is also checked.

References:

JD reference drawings -

JDF-1-3-4/5 N. Shore Fish Ladder - Pumphouse

JDF-1-3-4/8 N. Shore Fish Facilities - Section of Pump & Pump Discharge Chute (Shows under-sized radius of interior concrete corner, leading to discharge duct)

JDF-1-4-2/1 N. Shore Fish Ladder - Concrete Outline

(Shows diffusers and stove-pipe wells & fish ladder entrance X-Section)

JDF-1-4-2/17 N. Shore Fish Ladder – Section Views No. 2 (shows stove-pipe shaft & overflow weir)

JDF-1-4-2/18 N. Shore Fish Ladder – Section Views No. 3

JDF-1-4-2/52 N. Shore Fish Ladder - Weir 155 to 263

JDF-1-4-2/57 N. Shore Fish Ladder – Staff Gage Locations (incl. inside & outside of fish ladder entrance), (shows 'water supply conduit' from pumps)

JDF-1-4-2/58 N. Shore Fish Ladder – Elevation View (shows orifice covers and Stove-pipe shafts leading to diffusers. Also vent well in auxiliary water supply (AWS) conduit where velocities are taken to compute AWS discharge rates.

JDF-1-4-2/104 N. Shore Fish Ladder – Temporary Fish Ladder

JDF-1-5-2/1 N. Shore Fish Ladder – Fish Entrance

JDF-1-5-2/12 N. Shore Fish Ladder – Existing General Layout (shows water Supply conduit, 'observation well', and NavLock discharge conduits routed Beneath water supply conduit)

JDF-1-5-2/19 N. Shore Fish Ladder – Modified Sections at Counting Station

JD misc. ref. -

2007 correspondence on North Fish Ladder evaluations – S. Schlenker, Cy Cook, Karen Kuhn, et al.